Samples of geometric random variables with multiplicity constraints

نویسندگان

  • Margaret Archibald
  • Arnold Knopfmacher
چکیده

We investigate the probability that a sample Γ = (Γ1,Γ2, . . . ,Γn) of independent, identically distributed random variables with a geometric distribution has no elements occurring exactly j times, where j belongs to a specified finite ‘forbidden set’ A of multiplicities. Specific choices of the set A enable one to determine the asymptotic probabilities that such a sample has no variable occuring with multiplicity b, or which has all multiplicities greater than b, for any fixed integer b ≥ 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the bounds in Poisson approximation for independent geometric distributed random variables

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

متن کامل

Gaps in samples of geometric random variables

In this note we continue the study of gaps in samples of geometric random variables originated in Hitczenko and Knopfmacher [Gap-free compositions and gap-free samples of geometric random variables. Discrete Math. 294 (2005) 225–239] and continued in Louchard and Prodinger [The number of gaps in sequences of geometrically distributed random variables, Preprint available at 〈http://www.ulb.ac.be...

متن کامل

Support vector regression with random output variable and probabilistic constraints

Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...

متن کامل

Solution of Probabilistic Constrained Stochastic Programming Problems with Poisson, Binomial and Geometric Random Variables

Probabilistic constrained stochastic programming problems are considered with discrete random variables on the r.h.s. in the stochastic constraints. It is assumed that the random vector has multivariate Poisson, binomial or geometric distribution. We prove a general theorem that implies that in each of the above cases the c.d.f. majorizes the product of the univariate marginal c.d.f’s and then ...

متن کامل

The number of distinct values of some multiplicity in sequences of geometrically distributed random variables

We consider a sequence of n geometric random variables and interpret the outcome as an urn model. For a given parameter m, we treat several parameters like what is the largest urn containing at least (or exactly) m balls, or how many urns contain at least m balls, etc. Many of these questions have their origin in some computer science problems. Identifying the underlying distributions as (varia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006